The Ly49Q Receptor Plays a Crucial Role in Neutrophil Polarization and Migration by Regulating Raft Trafficking

Shigemi Sasawatari,1 Mariko Yoshizaki,1 Choji Taya,2 Aya Tazawa,1 Kaori Furuyama-Tanaka,1 Hiromichi Yonekawa,2 Taeko Dohi,1 Andrew P. Makrigiannis,3 Takehiko Sasazuki,4 Kayo Inaba,5 and Noriko Toyama-Sorimachi5,*,7

1Department of Gastroenterology, Research Institute, International Medical Center of Japan, Toyama1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
2Department of Laboratory Animal Science, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya-ku, Tokyo 156-8506, Japan
3Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Roger Guindon Hall, Rm 4226, Ottawa, ON K1H 8M5, Canada
4International Medical Center of Japan, Toyama1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan
5Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
*Correspondence: nsorima@ri.imcj.go.jp
DOI 10.1016/j.immuni.2010.01.012

SUMMARY

Neutrophils rapidly undergo polarization and directional movement to infiltrate the sites of infection and inflammation. Here, we show that an inhibitory MHC I receptor, Ly49Q, was crucial for the swift polarization of and tissue infiltration by neutrophils. During the steady state, Ly49Q inhibited neutrophil adhesion by preventing focal-complex formation, likely by inhibiting Src and PI3 kinases. However, in the presence of inflammatory stimuli, Ly49Q mediated rapid neutrophil polarization and tissue infiltration in an ITIM-domain-dependent manner. These opposite functions appeared to be mediated by distinct use of effector phosphatase SHP-1 and SHP-2. Ly49Q-dependent polarization and migration were affected by Ly49Q regulation of membrane raft functions. We propose that Ly49Q is pivotal in switching neutrophils to their polarized morphology and rapid migration upon inflammation, through its spatiotemporal regulation of membrane rafts and raft-associated signaling molecules.

INTRODUCTION

The rapid infiltration of affected tissues by neutrophils is critical for the host defense against invading bacteria and response to acute inflammation, and neutrophils have specific inherent properties for polarization and migration. They migrate to sites of infection and inflammation along a gradient of chemotacticants, such as chemokines, and the bacterially derived tripeptide fMet-Leu-Phe (fMLP). Neutrophils respond to the shallow chemoattractant gradient by becoming morphologically polar, with a lamellar pseudopod at the cell’s leading edge (lamellipodia) and a rounded contractible trailing edge (uropodia) (Affolter and Weijer, 2005; Downey, 1994; Servant et al., 2000). Interestingly, exposure to a single concentration of chemoattractant (i.e., without a gradient), can trigger neutrophil polarization (Wong et al., 2006; Xu et al., 2003), and the neutrophil’s pseudopod is far more responsive to chemoattractants than are its sides and uropod (Xu et al., 2003; Zigmond et al., 1981). Studies aimed at understanding the molecular mechanisms of these neutrophilic attributes have demonstrated specific roles for cellular signals and cytoskeletal assemblies that restrict “frontness” and “backness” in a neutrophilic cell line derived from HL-60 (Wong et al., 2006; Xu et al., 2003). The main feature of frontness is the protruding pseudopod, which contains polymerized F-actin and is dependent on a heterotrimeric G protein (Gi), PI3P, the Rho GTPase Rac, and F-actin. In contrast, “backness” is characterized by a contractile actomyosin system, and its formation is induced by signals that include a different heterotrimeric G protein (Gq12 and Gq13), RhoA, a Rho-dependent kinase, ROCK, and myosin II. Backness signals inhibit frontness signals and vice versa. Localized incompatible actin responses triggered by different G proteins, actin polymerization in the front and actomyosin contraction at the back, provide a partial explanation of how polarity is organized in neutrophils. However, these signaling molecules are widely expressed in various cell types, and their spatiotemporal regulation is still largely unknown. Therefore, the molecular basis for the specific behaviors of polarized neutrophils is still not fully explained by the information on the roles and locations of these signaling molecules.

Inhibitory receptors possessing one or more immunoreceptor tyrosine-based inhibitory motifs (ITIMs) play crucial roles in the regulation of a wide range of immune responses (Lanier, 1998). Ly49Q is an ITIM-bearing inhibitory receptor belonging to the Ly49 family (Makrigiannis et al., 2002; Toyama-Sorimachi et al., 2004). Inhibitory NK receptor family members recognize MHC class I or its related molecules to distinguish target cells from nontarget ones (Lanier, 1998). Recognition of the self MHC class I molecules on the target cell induces a signal via ITIM-bearing inhibitory receptors that inhibits NK cell cytotoxic functions and cytokine production (Lanier, 1998). Like other NK receptor
family members, Ly49Q recognizes classical MHC class I molecules such as H-2K\(^b\) (Scarpellino et al., 2007; Tai et al., 2007). The ITIM of Ly49Q can recruit phosphatases SHP-1 and SHP-2 in a tyrosine-phosphorylation-dependent manner (Toyama-Sorimachi et al., 2004). However, even though its high sequence similarity and chromosomal location have led to Ly49Q being classified as an NK receptor family member, it is not expressed on either NK cells or T cell subsets. Rather, it is preferentially expressed on Gr-1\(^+\) cells, including monocytes and macrophages, plasmacytoid dendritic cells (pDCs), and neutrophils (Omatsu et al., 2005; Tai et al., 2008; Toyama-Sorimachi et al., 2004).

Recently, in a report on Ly49Q-deficient mice, we showed that Ly49Q is important for pDC function, including the TLR9-triggered production of type I IFN and IL-12 (Tai et al., 2008). We also showed that the impaired cytokine production in Ly49Q-deficient cells was due to dysregulation of both the trafficking of TLR9 and CpG-containing endolysosomes and the TLR9-mediated activation of MAP kinase (Yoshizaki et al., 2009). Using immunohistochemistry, we also found that Ly49Q colocalizes not only with TLR9 and CpG, but also with Rab5 and phosphorylated MAP kinases in endosomes. Thus, Ly49Q appears to be involved in membrane dynamics, especially in the spatiotemporal regulation of endosome-lysosome trafficking and the associated signaling.

We also reported that Ly49Q is involved in the rapid induction of macrophage spreading and polarization, with marked formation of lamellipodia and filopodia (Toyama-Sorimachi et al., 2004). Several studies have shown that membrane trafficking is crucial for polarization and migration in various cell types (Mañes et al., 1999; Pierini et al., 2003; Polishchuk et al., 2004). These and our earlier observations, including on Ly49Q-mediated endosome-lysosome trafficking, led us to hypothesize that Ly49Q contributes to the organization of cell polarity and the subsequent migration of inflammatory cells by regulating membrane trafficking. Indeed, Ly49Q is itself internalized in a raft-dependent manner, and its internalization and trafficking are regulated by its ITIM and by the activity of associated phosphatases (Yoshizaki et al., 2009). Here, we demonstrate that Ly49Q was essential for the organization of neutrophil polarity and their subsequent invasion of extravascular tissues during early inflammation. Importantly, in the absence of inflammatory stimuli, Ly49Q inhibited the firm adhesion and spreading of neutrophils by suppressing the formation of focal adhesion complexes, indicating that Ly49Q helps prevent the deleterious adhesion of neutrophils during the steady state. Interestingly, Ly49Q associated with the inhibitory phosphatase SHP-1 in the steady state, but it recruited SHP-2, which plays a largely positive role in cell activation, adhesion, and migration, in the presence of inflammatory stimuli. Therefore, these apparently opposite functions of Ly49Q in the steady state and the inflammatory state appeared to be mediated by recruiting an additional associated effector phosphatase. We propose a mechanism in which Ly49Q directs the organization of neutrophil polarization, as well as their migration to sites of inflammation, by regulating membrane raft functions. These membrane raft functions permit the rapid reorganization of neutrophils in the presence of inflammatory signals, and maintain neutrophil homeostasis in the absence of such signals.

RESULTS

Expression and Distribution of Ly49Q on Neutrophils

We previously reported that Ly49Q is expressed on Gr-1\(^+\) cells, including monocytes, macrophages, and pDCs, in the mouse spleen, bone marrow (BM), and fetal liver (Omatsu et al., 2005; Toyama-Sorimachi et al., 2004). We first confirmed that neutrophils in mouse peripheral blood and BM expressed Ly49Q under steady-state conditions (Figure S1A available online). Infiltrating neutrophils that had migrated to the peritoneal cavity in response to casein or to the air pouches in response to zymosan also expressed Ly49Q, showing the typical lobulated nucleus (Figure 1A, see also Figure S1A). Ly49Q colocalized with H-2K\(^b\) not only at the cell surface, but also in endosomal vesicles, suggesting that Ly49Q was internalized together with H-2K\(^b\) (Figure 1B, see also Figure S1B). This was consistent with our recent observation in pDCs that Ly49Q is internalized and localizes to endosomes (Yoshizaki et al., 2009). Because the association of Ly49Q with H-2K\(^b\) is stable under acidic conditions (Yoshizaki et al., 2009), it is likely that the Ly49Q-H-2K\(^b\) interaction is sustained in the internalized vesicles.

To investigate whether Ly49Q contributes to the polarization of neutrophils in response to inflammatory signals, neutrophils obtained from Ly49Q-deficient or control littermate mice were stimulated with fMLP, and their adoption of the polarized phenotype and chemotactic migration were examined. The control Ly49Q\(^+/+\) neutrophils responded to fMLP by spreading their cytoplasm and adopting the polarized distribution of polymerized actin and of CD44, a known uropodial marker (Figures 1C and 1D) (del Pozo et al., 1995). In contrast, in Ly49Q-deficient (Kira17\(^−/−\)) neutrophils, the distribution of the polymerized actin and of CD44 remained uniform in the presence of fMLP (Figures 1C and 1D). The percentage of polarized cells among the fMLP-treated Kira17\(^−/−\) neutrophils was significantly (p < 0.0002) lower than among the Kira17\(^+/−\) neutrophils (Figure 1E). Consistent with this, significantly (p < 0.05) fewer Kira17\(^−/−\) neutrophils showed fMLP-induced chemotactic migration than Kira17\(^+/−\) neutrophils (Figure 1F). Kira17\(^+/−\) neutrophils also showed reduced chemotaxis to KC compared with Kira17\(^+/+\) neutrophils (Figure 1F), whereas no difference in ROS production in response to fMLP was observed between the Kira17\(^+/−\) and Kira17\(^+/+\) neutrophils (Figure S1C). Furthermore, in vivo, the number of neutrophils infiltrating the air pouch 3 hr after zymosan or E. coli inoculation and the neutrophilic migration to inflamed tissue were reduced in the Ly49Q-deficient mice (Figures 1G and 1H). To confirm the role of MHC class I as a Ly49Q ligand in neutrophil migration, we examined the chemotactic activity of B2m\(^−/−\) neutrophils in vitro. The migration of B2m\(^−/−\) neutrophils to the chemoattractants was significantly (p < 0.001) reduced (Figure 1I), suggesting that the Ly49Q-MHC class I interaction plays an important role in neutrophil migration. Taken together, these results indicated that Ly49Q plays an important role in the polarity formation and migration of neutrophils.

Constitutive Association of SHP-1 and Activation-Dependent Recruitment of SHP-2 to Ly49Q

To understand how Ly49Q is involved in neutrophil polarization, we compared the intracellular distribution of Ly49Q-related molecules in neutrophils from Ly49Q-deficient mice and their
control littermates. In the absence of fMLP, H-2Kb (the Ly49Q ligand) was predominantly localized to the plasma membrane in Klra17−/− neutrophils (Figure 2A). Distribution of H-2Kb appeared to form clusters. Notably, SHP-1 was colocalized with H-2Kb in the absence of fMLP in the Klra17−/− neutrophils (Figure 2A), and this colocalization was Ly49Q dependent because it was not observed in the Klra17+/− neutrophils (Figure 2A). We confirmed the association between SHP-1 and H-2Kb in the absence of fMLP by immunoprecipitation (Figure S3). Interestingly, in fMLP-treated Klra17+/− neutrophils, H-2Kb and SHP-1 together relocated from the cell surface to endosomal compartments, with many positive immunofluorescent

Figure 1. Impaired Polarization and Migration of Neutrophils from Ly49Q-Deficient Mice
(A) Expression of Ly49Q on neutrophils from inflamed dorsal air pouch of C57BL/6 mice. Cells prepared from inflamed dorsal air pouch were stained with FITC-conjugated anti-Gr-1 and PE-conjugated anti-Mac-1 (CD11b) with a biotin-conjugated anti-Ly49Q (NS34, filled histograms) or biotin-conjugated isotype-matched (rat IgG2a, open histograms) antibody, followed by streptavidin-conjugated APC. Cells expressing both Gr-1 and Mac-1 were analyzed for the expression of Ly49Q. Scale bars (insets), 20 µm.
(B) Colocalization of Ly49Q and H-2Kb in neutrophils. Confocal images show casein-induced neutrophils stained with anti-Ly49Q and anti-H-2Kb. Scale bars, 5 µm.
(C) Phase-contrast microscopic analysis of neutrophil polarization. Neutrophils were enriched from the BM of Ly49Q-deficient (KO) or control littermate (hetero) mice by removing B220+ cells from the BM of Ly49Q-deficient (KO) or control littermate (hetero) mice. Neutrophils were enriched as described in (C). Confocal images show the cytoskeletal organization (F-actin) stained with Alexa594-labeled phalloidin (red) and uropodia stained with FITC-labeled anti-CD44 (green) in fMLP-treated neutrophils. Arrowheads and asterisks indicate lamellipodia and uropodia, respectively. No obviously polarized distribution of F-actin or CD44 was observed in the Ly49Q KO neutrophils.
(D) Impairment of fMLP-induced polarization in Ly49Q-deficient neutrophils (KO). Neutrophils were prepared as described in (D). Neutrophils prepared as described in (C) that had migrated in response to fMLP or KC to the lower wells of chemotaxis chambers were counted. The results from three independent experiments are shown. Data are presented as mean ± SEM.
(F) Impairment of the chemotactic migration of Ly49Q-deficient neutrophils. The BM neutrophils that migrated in response to fMLP or KC to the lower wells of chemotaxis chambers were counted. The results from three independent experiments are shown. Data are presented as mean ± SEM.
(G and H) Neutrophil migration into an air pouch. The neutrophil migration in vivo was examined using the dorsal air pouch model. Three hours after zymosan injection (0.5 mg/mouse) (G) or

control littermates. In the absence of fMLP, H-2Kb (the Ly49Q ligand) was predominantly localized to the plasma membrane in Klra17−/− neutrophils (Figure 2A). Distribution of H-2Kb appeared to form clusters. Notably, SHP-1 was colocalized with H-2Kb in the absence of fMLP in the Klra17−/− neutrophils (Figure 2A), and this colocalization was Ly49Q dependent because it was not observed in the Klra17+/− neutrophils (Figure 2A). We confirmed the association between SHP-1 and H-2Kb in the absence of fMLP by immunoprecipitation (Figure S3). Interestingly, in fMLP-treated Klra17+/− neutrophils, H-2Kb and SHP-1 together relocated from the cell surface to endosomal compartments, with many positive immunofluorescent
signals in the perinuclear region. In contrast, even in the presence of fMLP, the Klra17−/− neutrophils showed neither SHP-1 colocalization with H-2Kb nor the efficient translocation of H-2Kb to the endosomal compartments, although the amount of H-2Kb in the Klra17−/− neutrophils appeared to be reduced. This result might have been due to the structural instability of H-2Kb in the absence of Ly49Q during endosomal acidification. These results indicated that SHP-1 was constitutively associated with Ly49Q, which interacted with H-2Kb in cis at the cell surface in the steady state, and that the Ly49Q-H-2Kb-SHP-1 complexes were internalized and transported to the perinuclear endosomal compartments in response to fMLP stimulation.

In contrast to SHP-1, SHP-2 was not colocalized with H-2Kb in the steady state (Figure 2B). Notably, fMLP stimulation induced the colocalization of SHP-2 with H-2Kb and the redistribution of SHP-2 to the perinuclear endosomal compartments. Importantly, the recruitment and transport of SHP-2 was Ly49Q dependent, as it was not observed in Klra17−/− neutrophils. These results indicate that Ly49Q is responsible for the fMLP-dependent recruitment of SHP-2 to membrane compartments from the cytoplasm. In addition, Ly49Q, along with the SHPs and H-2Kb, was localized to lipid rafts, as visualized by cholera toxin B subunit (CTB) binding, at the cell surface and in the endosomal compartments (Figure 3A). These results indicate that Ly49Q is responsible for recruiting SHP-2 to membrane rafts and for the trafficking of the rafts and the associated SHP-1 and SHP-2. A previous study established that SHP-2 partitioning to raft compartments triggers Rho activation and subsequently integrin-mediated signaling (Lacalle et al., 2002). Therefore, the Ly49Q-dependent recruitment of SHP-2 to rafts during neutrophil polarization indicates that Ly49Q has an important role in the regulation of polarity formation. These data also demonstrate that Ly49Q differentially associates with SHP phosphatases and regulates neutrophil functions in a different manner, depending on the presence or absence of the fMLP stimulus.

Ly49Q-Dependent Internalization and Movement of Lipid Rafts

Previous studies reported that the trafficking and redistribution of lipid rafts are critical for cell polarization and directional migration (Mañas et al., 1999; Pierini et al., 2003; Polishchuk et al., 2004). Therefore, we hypothesized that Ly49Q regulates the trafficking of endocytosed rafts in neutrophils to induce polarity. To test this hypothesis, raft distribution was compared between Klra17+/− and Klra17−/− neutrophils. In the presence of fMLP, polarized Klra17+/− neutrophils efficiently internalized raft components (Figure 3B). The internalized rafts gathered at the perinuclear region, similar to the distribution of H-2Kb shown in
Figure 2. In contrast, in the Klra17−/− neutrophils, the rafts largely remained at or near the cell surface, and the efficient redistribution of raft components was not observed in the presence of fMLP. In the absence of fMLP, there was little difference in the distribution of the rafts between Klra17+/− and Klra17−/− neutrophils, and the staining was mainly observed at the cell surface (data not shown).

To confirm the importance of Ly49Q in raft behavior, we carried out siRNA gene-targeting experiments using X63 myeloma cells expressing endogenous Ly49Q. The intracellular distribution of raft components, labeled by CTB binding, decreased in the Ly49Q-specific siRNA-expressing X63 cells, but not in cells expressing a control RNA (Figures 3C and 3D). Quantitative analysis of the CTB fluorescence and a comparison of the areas covered by intracellular CTB-labeled rafts, by counting the corresponding pixels, also indicated that the decreased Ly49Q expression reduced intracellular raft components (Figures 3E and 3F). A similar impairment in raft distribution was observed in Ly49Q−/−, but not in Ly49Q+/− RAW264 clones (Yoshizaki et al., 2009) (Figure S2), also supporting an important role for Ly49Q in raft trafficking.

Importance of Ly49Q in the Persistence of Raft-Mediated Signaling

We next investigated whether the dysregulated raft behavior in Klra17−/− neutrophils affected fMLP-triggered signals, which are transduced at lipid rafts (Sitrin et al., 2006). Lipid rafts have been shown to serve as an important signaling platform for various receptors, including chemokine receptors (Gómez-Moutón et al., 2004; Mañes et al., 2001; Sitrin et al., 2006). After ligand binding to a chemokine receptor, a heterotrimeric GTPase is activated, which is coupled to downstream signaling pathways by mechanisms such as the activation of Src family kinases (Thelen, 2001). Therefore, we focused on raft-associated and G protein-coupled receptor (GPCR)-proximal kinases and found that the Src kinase activation induced by fMLP was severely

\[\text{Image: Figure 3. Ly49Q-Dependent Raft Endocytosis} \]

(A) Colocalization of Ly49Q with lipid rafts. RAW264 cells were transfected with FLAG-tagged Ly49Q and stained for Ly49Q with anti-FLAG (red) and for rafts with CTB (green). Confocal images from a single plane are shown.

(B) Lipid raft internalization and redistribution during fMLP-induced neutrophil polarization. Neutrophils enriched from BM were incubated at 37°C for 40 min in the presence of fMLP and stained for rafts with CTB (green) and for F-actin with phalloidin (red). Nuclei were visualized with DAPI. These data are representative of three or four independent experiments.

(C) Decreased expression of Ly49Q in X63 cells after introducing Ly49Q-specific siRNA. The X63 myeloma cell line, which expresses Ly49Q endogenously, was transfected with Ly49Q-specific siRNA or control RNA and then analyzed for Ly49Q expression by flow cytometry. Histograms show the mean fluorescence intensities.

(D) Confocal images of lipid rafts in the Ly49Q gene-targeted X63 myeloma cells. After 72 hr of siRNA transfection, the cells were stained with CTB to visualize the lipid rafts and analyzed by confocal microscopy. This figure is representative of two independent experiments.

(E and F) Quantitative analyses of the intracellular raft distribution in Ly49Q gene-targeted X63 myeloma cells. The CTB fluorescence intensity in the confocal images shown in (D) is represented by 3D histograms (E) according to the LC500 analysis program. Each 3D histogram represents about 15–20 cells, and each peak indicates the fluorescence intensity of one cell. Bar graph (F) shows the percentage of pixels with a signal intensity less than 10 (dark gray bars) or greater than 10 (light gray bars). The fluorescence signal intensities of ten non-overlap photographs for each condition were digitalized for the pixel analyses. *p < 0.0002; **p < 0.0002. Data are presented as mean ± SEM.
impaired in Klra17−/− neutrophils. The amount of Src kinases phosphorylated on Tyr416 was substantially increased 1 min after fMLP treatment in the Klra17−/− neutrophils (Figures 4A and 4B), but this activation was transient and the amount of phosphorylated Src kinase had drastically decreased by 30 min after the treatment. In contrast, in the Klra17+/− neutrophils, there was an early, moderate activation of Src kinase, with the amount of active Src kinase increasing at each time point. During fMLP treatment, the total amount of Src kinase gradually decreased in the Klra17−/− neutrophils, but not in the Klra17+/− neutrophils, consistent with the accepted understanding that active Src is proteolytically degraded (Ben-Neriah, 2002). These observations were also consistent with the recruitment of SHP-2 by Ly49Q because SHP-2 positively regulates Src kinase activity (Zhang et al., 2004). Given that Ly49Q recruited SHP-2 to rafts and maintained its association with Src kinase, probably through the recruitment of SHP-2 to the raft compartment (Figure 4C) (Parton and Richards, 2003). Because Csk negatively regulates Src kinase activity (Zhang et al., 2004), inhibition of Src by Ly49Q may be mediated by a Csk-dependent mechanism. In addition to inhibiting the tyrosine phosphorylation of Src kinase, the expression of Ly49Q inhibited the tyrosine phosphorylation of the PI3 kinase p85 (Figures 4C and 4D). Taken together, these results strongly suggest that, on one hand, Ly49Q inhibits Src and PI3 kinases in the presence of fMLP. Because Src kinase has an essential role in cell polarization and migration (Charrest and Firtel, 2007; Grande-García et al., 2007), our findings strongly suggested that Ly49Q-regulated Src activation contributes to neutrophil polarization and migration.

Inhibition of Neutrophil Infiltration into Inflammatory Sites in Tg Mice Expressing Ly49Q-YF

To clarify the importance of its ITIM sequence in promotion of polarization and migration by Ly49Q, we analyzed transgenic
mice expressing a mutant of Ly49Q lacking an ITIM domain (Ly49Q-YF), which was designed to function as a dominant-negative isofrom for ITIM-dependent functions (Toyama-Sorimachi et al., 2004). The ligand-binding ability of Ly49Q-YF was confirmed by both flow cytometry analyses of H-2Kb tetramer binding (Figures S3A and S3B) and coimmunoprecipitation experiments (Figure S3D). Ly49Q-YF formed heterodimers with Ly49Q-WT (Figure S3E). The dominant-negative function of Ly49Q-YF was validated by examining the effects of its expression along with Ly49Q-WT on PI3 kinase and Src family kinases (Figures S3F and S3G). We also found that the phosphorylation of Ly49Q-associated SHP-2, and probably that of SHP-1, was substantially diminished in the presence of Ly49Q-Ly49Q-YF heterodimers, indicating that the dimers required both ITIMs to fully exert their functions (Figure S3H). The dominant-negative function of Ly49Q-YF was further confirmed by its abrogation of the fMLP-induced changes in tyrosine phosphorylation in neutrophils from Ly49Q-YF Tg mice (Figure S3I).

To determine whether the ITIM of Ly49Q is involved in neutrophil migration, we examined the ability of neutrophils to infiltrate inflammatory sites. The infiltration of air pouches by neutrophils was assessed by inoculating them with zymosan and evaluating the amount of infiltration 3 hr later. We found a significant (p = 0.00001) decrease in the number of infiltrating neutrophils in the Ly49Q-YF Tg mice (Figure 5A). In contrast, the neutrophil infiltration into air pouches at the same time point was significantly (p = 0.03) greater in the Ly49Q-WT Tg mice than in their control littermates (Figure 5A). By 6 to 18 hr after zymosan injection, the difference in the number of infiltrating neutrophils between the Tg and littermate control mice was no longer significant (data not shown, p > 0.2). We further confirmed the impairment of neutrophil migration using Matrigel chambers for invivo invasion assays. As shown in Figures 5B and 5C, significantly (p < 0.005) fewer Ly49Q-YF than Ly49Q-WT neutrophils migrated in vitro (Figure 5C). These results indicated that the ITIM of Ly49Q is important for chemokine-induced neutrophil infiltration into tissues.

Critical Role of the Ly49Q ITIM in Organizing the Cellular Polarity of Neutrophils

To clarify whether the impaired migration of the Ly49Q-YF neutrophils was associated with impaired cellular polarity, we examined the adoption of polarity by Ly49Q-YF neutrophils. As shown in Figure 5D, in the presence of fMLP, the Ly49Q-WT neutrophils clearly became polarized, with a ruffled lamellipodia, a contracting uropodia, and a nucleus with a well-organized lobulated structure. Neutrophils prepared from control littermates also showed a polarized morphology in response to fMLP. In contrast, the spreading Ly49Q-YF neutrophils did not exhibit clear polarization, and a number of cells showed an unusual folding of the lobulated nucleus (Figure 5D). An examination of filamentous actin confirmed that both actin polymerization and the organization of cell polarity were impaired in the Ly49Q-YF neutrophils (Figures 5E and 5F). In the Ly49Q-YF neutrophils, the raft internalization and subsequent redistribution in response to fMLP was also severely impaired, and most rafts remained at the cell surface (Figure 5G). In contrast, the Ly49Q-WT neutrophils and the non-Tg neutrophils, which expressed endogenous Ly49Q, showed internalization of the raft compartments and their redistribution to the perinuclear region. When the intracellular distribution of Ly49Q itself was examined, most Ly49Q-WT was at the plasma membrane in the absence of fMLP (Figure 5H, see also Figure S3J). After fMLP treatment, Ly49Q-WT was clearly internalized and transported to the perinuclear region, consistent with the redistribution of the H-2Kb and SHP phosphatases shown in Figure 2 (Figure 5H, see also Figure S3J). In contrast, Ly49Q-YF was localized to the perinuclear regions even in the absence of fMLP, and its location did not change with fMLP treatment (Figure 5H, see also Figure S3J). Therefore, the fMLP-triggered raft movements were accompanied by the redistribution of Ly49Q and were dependent on its ITIM. These results indicated that the Ly49Q-dependent raft redistribution was controlled by the ITIM-dependent trafficking machinery of Ly49Q itself.

Inhibition of Neutrophil Adhesion and Spreading by Ly49Q in the Absence of Chemoattractant

We next examined the roles played by Ly49Q in the steady state because the inhibition of the Src and PI3 kinase activities might affect cell behavior. Since both kinases are important for the formation of focal adhesions, we compared the adhesiveness of Ly49Q Tg-derived neutrophils in the absence of chemoattractant stimuli with that of control B6 neutrophils. The quantitative adhesion assay showed no obvious difference in the adhesion of Ly49Q-YF compared with control B6 neutrophils, in the presence or absence of fMLP, although a slight inhibition of adhesion was observed in the Ly49Q-WT neutrophils in the absence of fMLP (Figure 6A). However, microscopic analyses revealed marked morphological differences between the Ly49Q-WT and Ly49Q-YF neutrophils in the absence of fMLP. The Ly49Q-WT neutrophils were bright, round, and easily detached from the substrate by shaking (Figure 6B), whereas the Ly49Q-YF neutrophils spread and adhered more tightly. The Ly49Q-YF neutrophils appeared dark and had a flat, elongated morphology with protrusions. Staining for paxillin, a scaffolding protein essential for the stable formation of focal adhesions (Webb et al., 2004), showed it to be attenuated at the focal adhesion-like structures in the Ly49Q-WT neutrophils, verifying their decreased adhesiveness (Figure 6B). There was no substantial difference in the expression levels of adhesion molecules, such as integrins between Ly49Q-WT and Ly49Q-YF neutrophils (data not shown).

We further confirmed this inhibitory effect using WEHI3 transfectants expressing Ly49Q-WT, Ly49Q-YF, or empty plasmid (Figure 6C). WEHI3 cells expressing Ly49Q-WT showed rounded shapes and decreased adhesiveness. In contrast, WEHI3 cells expressing almost equal amounts of Ly49Q-YF adhered and spread. Control and Ly49Q-YF transfectants exhibited paxillin staining at the pericellular edges, associated with structures that looked like focal adhesions. In contrast, the Ly49Q-WT neutrophils, paxillin staining appeared diffuse, and the focal adhesion-like structures were not distinct. Inhibition of Src kinase by Ly49Q in the steady state was consistent with this observation, because Src activity is necessary for focal adhesion formation (Parsons and Parsons, 1997). Thus, in the absence of chemoattractant, Ly49Q prevents firm adhesion in an ITIM-dependent manner. This function may be attributable to a specific feature of Ly49Q, because Ly49A did not show a comparable effect on focal adhesion formation (Figures S4A and S4B).
Such functional differences between Ly49Q and Ly49A may be explained by differences in the acid resistance of their ligand-binding activity and the phosphatases they preferentially recruit (Yoshizaki et al., 2009) (Figures S4C and S4D).

Ly49Q-Dependent Raft Organization and Enhancement of the Demarcated Response of Neutrophils

Finally, we examined whether the presence of Ly49Q causes quantitative and qualitative changes in raft compartments. Using...
WEHI3 transfectants, the rafts were separated as detergent insoluble fractions by sucrose density-gradient centrifugation, and the distribution of raft-associated molecules, including GM1 and caveolin-1, was examined. In WEHI3 transfectants, the rafts identified by CTB binding were mainly detected in fractions 4 and 5 (Figure 7A). Interestingly, the Ly49Q-WT transfectants showed an increase in GM1 content in the detergent-insoluble fractions (Figures 7A, 7B, and 7D). A small increase in GM1 in the light fractions was also observed in the Ly49A transfectants. In addition, the amount of GM1 was increased in the intermediate-density fractions (fractions 6 to 8) of Ly49Q-WT WEHI3 compared to those of the other transfectants (Figure 7B). These intermediate-density fractions included caveolin-1 and Rab5 (Figures SSA and SSB) and were qualitatively different from the light-density fractions (fractions 3 to 5). Ly49Q itself was detectable in these intermediate fractions (Figure 7C). These results indicated that Ly49Q mediates the formation of a certain type of raft domain in an ITIM-dependent manner.

We then compared the distribution of raft-associated signaling molecules in the absence or presence of stimulation. No remarkable differences in the distribution of SHP-1 and SHP-2 were observed among the transfectants in the steady state (Figure 7E, see also Figure S5C). However, when the cells were stimulated by raft crosslinking, a noticeable redistribution of SHP-2 to the intermediate fractions was observed in Ly49Q-WT WEHI3. In contrast, in the Ly49Q-YF, mock, and Ly49A transfectants, less SHP-2 was redistributed to the intermediate fractions than in Ly49Q-WT. Surprisingly, the Src distribution was greatly influenced by the presence of Ly49Q-WT. In the absence of stimulation, there was less Src in the light and intermediate fractions of Ly49Q-WT WEHI3 than in those of the other transfectants, and it appeared to be excluded from the raft fraction (Figure 7E). On the other hand, when the cells were stimulated by raft crosslinking, a redistribution of Src to the intermediate fractions was induced in the Ly49Q-WT transfectants.

In addition, phosphorylation status of the redistributed Src appeared to be changed. In contrast, in the Ly49Q-YF- and mock-transfected WEHI3, Src was constitutively broadly distributed, and the stimulation-induced redistribution and change of phosphorylation status of Src was almost undetectable. The distribution of Ly49Q-WT and Ly49Q-YF did change before and after the stimulation (data not shown). These results indicated that Ly49Q is responsible for the organization of a certain type of raft and for the correct partitioning of Src to the rafts, with the correct timing, which is important for the sharp demarcation between quiescent and active-state neutrophils.

DISCUSSION

Compared with most vertebrate cells, blood neutrophils become polarized and move quickly to immediately infiltrate inflammatory sites. To do this successfully, neutrophils possess a particular competence for polarization and directional movement (Zigmond et al., 1981). In the current study, we found, using Ly49Q-deficient mice, that an inhibitory MHC class I receptor, Ly49Q, plays a critical role in the ability of neutrophils to become polarized and infiltrate extravascular tissues. Our data demonstrated that Ly49Q was necessary for one of the key events required for adhesion and migration: the recruitment of SHP-2 and Src to the raft compartments (Lacalle et al., 2002). In parallel, Ly49Q also mediated raft internalization and redistribution, which is known to be required for cellular polarization. Our data from dominant-negative Ly49Q Tg mice and transfectants clearly demonstrated that the ITIM of Ly49Q is important for these functions. The preferential expression of Ly49Q in inflammatory cells, such as neutrophils and plasmacytoid dendritic cells, might confer on these cells the unique ability to respond immediately to inflammatory stimuli. Membrane lipid rafts play crucial roles as signaling platforms and modulate many signaling pathways in diverse biological processes, such as cell division, apoptosis, adhesion, and chemotaxis (Mañes et al., 2001; Parton et al., 2003).
Lipid rafts also regulate the spatial targeting of the small GTPases required for cell spreading and migration (Lacalle et al., 2002). Previous studies established that lipid rafts are internalized when cells are detached from a substratum (Balasubramanian et al., 2007). The endocytosed rafts are transported in a microtubule-dependent manner to a distinct perinuclear region, where they coalesce; they are eventually returned to the plasma membrane via recycling endosomes (Balasubramanian et al., 2007). The precise mechanism underlying how Ly49Q influences raft behavior requires further investigation. The amount of GM1 in the detergent-insoluble fractions was increased in the Ly49Q-051015202530 WT transfectants, but not in the Ly49Q-YF or mock transfectants, indicating that Ly49Q contributes to raft formation in an ITIM-dependent manner. This was consistent with the results of our siRNA gene targeting experiments, in which the inhibition of Ly49Q expression resulted in a decrease in CTB staining. In particular, the organization of a certain raft compartment, which was of intermediate density and included Ly49Q itself and caveolin-1, depended on Ly49Q-WT. The intermediate-density fractions appeared to be important for signal transduction, because Src and SHP-2 were recruited there when the cells underwent raft-dependent stimulation. Importantly, our data clearly indicated that Ly49Q is pivotal for the sharp demarcation between the quiescent and active states of neutrophils, which is mediated by the partitioning of Src. That is, in the steady state, Src seems to be excluded from the raft compartments by Ly49Q, but in the presence of raft-mediated stimulation, Src is recruited to certain raft compartments and phosphorylated, in a Ly49Q-dependent, ITIM-dependent manner.

Our finding that the sustained activation of Src kinase in Klra17−/− neutrophils was impaired indicated that Ly49Q is a positive regulator of fMLP-induced signals. Similarly, Klra17−/− macrophages show impaired CpG-induced activation of JNK and p38, which correlates well with the abnormal trafficking of CpG-containing endosomes (Yoshizaki et al., 2009). On the
other hand, in Kira17+/+ macrophages, activated p38 and JNK are recruited to the cytosolic surface of Ly49Q-containing endosomes (Yoshizaki et al., 2009). Based on these data, it is intriguing to speculate that endocytosed rafts continue to function as a signaling platform for locally sustained signals, by maintaining the activity of the raft-associated signaling complexes. Maintenance of these activated complexes might also be beneficial for delivering them as a whole to specific regions in a cell during polarization. Although in some cases, receptor-ligand internalization has been thought to contribute to the downmodulation of a signal (Beguinot et al., 1984; Stoscheck and Carpenter, 1984), we found that the Ly49Q-MHC class I association appears to be maintained in an acidic environment (Yoshizaki et al., 2009), indicating that it at least retains the machinery required for signaling. Therefore, Ly49Q may maintain activated signaling complexes within endosomes and thereby help to transduce signals in locally partitioned regions such as the juxta-nuclear region or in the course of endosome transport along microtubules (Yoshizaki et al., 2009). We currently speculate that the intermediate-density fractions may include such signaling endosomes, because they included the endosomal marker Rab5 and Ly49Q localizes to endosomes (Yoshizaki et al., 2009).

A previous study demonstrated that the recruitment of SHP-2 to rafts is crucial for chemotactic migration via activation of the Rho small GTPase, which helps regulate the localized activation of myosin, uropodial retraction, cell-body traction, and adhesion dynamics (Lacalle et al., 2002). Therefore, the Ly49Q-dependent, stimulation-dependent partitioning of SHP-2 to the rafts may be a critical step in neutrophil migration. SHP-2 is generally a positive component of cell signaling, because this phosphatase functions upstream or downstream of various signaling molecules that activate cells, such as the EGF receptor, platelet-derived growth factor receptor, fibroblast growth factor, and Src family kinases (Poole and Jones, 2005). Recent reports also show that SHP-2 positively regulates the ERK pathway, promoting Src family kinase activation by inhibiting the recruitment of Csk to membrane fractions by dephosphorylating a Csk-targeting protein, Cbp (Dance et al., 2008; Zhang et al., 2004). Thus, the Ly49Q-mediated SHP-2 recruitment to rafts can also account for the subsequent activation of the Src and MAP kinases.

In contrast to SHP-2, SHP-1 plays a largely negative signaling role in signal transduction (Poole and Jones, 2005; Zhang et al., 2000). Negative functions of SHP-1 downstream of various immune recognition receptors, such as TCR and KIR, are well studied. Studies on moth-eaten mice have also provided strong evidence that this phosphatase plays a major role in the negative regulation of cell function (Tsui and Tsui, 1994). Our data showing Ly49Q’s association with SHP-1 in the steady state suggests that Ly49Q negatively regulates cell function through SHP-1 in the absence of stimuli. This idea is supported by our finding that the tyrosine phosphorylation of Src and PI3 kinases, both of which play important roles in the positive regulation of focal adhesions formation and migration, was inhibited in the steady state by Ly49Q (Fincham et al., 2000). Therefore, Ly49Q’s inhibition of focal complex formation in the steady state correlates well with its ability to inhibit the Src and PI3 kinases. PI3 kinase is a substrate for SHP-1 (Poole and Jones, 2005), suggesting that SHP-1 is responsible for inhibiting the tyrosine phosphorylation of PI3 kinase.

Taken together, our data support a model in which, in the absence of chemotactant stimuli, Ly49Q is largely located at the cell surface, where it inhibits the firm adhesion and spreading of neutrophils by preventing the stabilization of focal complexes (Webb et al., 2004). This inhibitory role includes the SHP-1-mediated inhibition of PI3 and Src kinases. When chemokine stimuli trigger the endocytosis of Ly49Q, accompanied by raft components, the process of neutrophil polarization begins. In this process, the Ly49Q ITIM and recruitment and phosphorylation of SHP-2 are crucial. These events also contribute to the sustained activation of endosomal raft-associated signaling, which accounts for the transduction of signals at compartments that are spatially and temporally segregated from the cell surface. The above model suggests a role for Ly49Q as a switching device in neutrophils. That is, it may turn off or suppress the adhesion and extravasation of neutrophils that would be deleterious in the steady state but swiftly switch on the neutrophil response to inflammation by redistributing the raft compartment to initiate polarization once a chemotactant is encountered. Thus, Ly49Q is a dual-function receptor that functions as an inhibitory receptor in the steady state, as well as an activation receptor in the presence of inflammatory stimuli. We propose that the Ly49Q-mediated switching function from inhibitory to activating hinges on L49Q’s additional recruitment of the effector phosphatase SHP-2. In addition, because Ly49Q expression is upregulated during cellular maturation (Omatsu et al., 2005), its upregulation may represent an increased potential for neutrophilic locomotion. We also speculate that the increased expression of both Ly49Q and MHC class I by IFNs (Toyama-Sorimachi et al., 2005) enhances raft functions, including phagocytosis, by increasing the raft content during inflammatory responses. Furthermore, the massive reorganization of lipid rafts resulting from the Ly49Q-MHC class I interaction would help ensure the rapid response of inflammatory cells. It is important to clarify whether human neutrophils have similar regulatory system because Ly49 family did not evolve in human. Several ITIM-bearing receptors, including ILT-LIR family members, have been identified in humans, possessing properties similar to Ly49Q regarding ligand interaction and tissue distribution (Volz et al., 2001). Therefore, a different ITIM-bearing receptor may substitute for Ly49Q function to mediate rapid response in human neutrophils.

One of the important functions of inhibitory MHC class I receptors in the context of target recognition by NK cells is to inhibit the polarization of lipid rafts and the disruption of the actin network, either of which causes the attenuation of NK cytotoxicity. In neutrophils, as we have demonstrated here, Ly49Q was integrated into lipid rafts and mediated neutrophil polarization by regulating raft status and its behavior, and the ITIM and associated phosphatases were crucial for Ly49Q’s functioning. It is interesting that a similar mechanism regulates raft dynamics in immune cells ranging from myeloid cells to NK cells. Phylogenetically, given that Ly49Q is one of the oldest genes of the Ly49 family (Wilhelm et al., 2002), the Ly49 molecule may have originally functioned in lower polymorphonuclear cells, such as phagocytes, to regulate membrane dynamics through cis interactions with MHC class I, a mechanism that was later adopted by NK cells to recognize self MHC class I in trans.
In conclusion, Ly49Q functions as a switching device for the swift initiation of neutrophil polarization to produce sharply demarcated responses. Furthermore, we showed an important role for Ly49Q as a safeguard from undesirable adhesion and migration, which might be important for the maintenance of neutrophilic homeostasis. Since Ly49Q is expressed in cells that migrate rapidly to sites of inflammation and infection, Ly49Q may also act as an important device in these cells to ensure their rapid and specific responses.

EXPERIMENTAL PROCEDURES

Mice

CS7BL/6J mice (6 to 7 weeks old) were purchased from CLEA Japan Inc. (Tokyo, Japan). CS7BL/6 Rag2−/− mice were purchased from Taconic Farms, Inc. (Hudson, NY). Ly49Q-WT Tg mice (CS7BL/6) and Ly49Q-deficient (Kira17−/−) mice (129S1) were described previously (Tai et al., 2008; Yoshizaki et al., 2009). Ly49Q-deficient mice were bred with 129S1 mice, and the resulting Kira17−/− and Kira17+/− litters were used for the same sets of experiments. Experiments for establishing Tg mice were performed according to the Guidelines for Animal Use and Experimentation set out by The Tokyo Metropolitan Institute of Medical Science (Rinshoken) (Tokyo, Japan). Experiments for analyzing Tg and Ly49Q-deficient mice were performed according to the Guidelines for Animal Use and Experimentation set out by the International Medical Center of Japan (Tokyo, Japan).

Establishment of Ly49Q-YF Tg Mice

The construction of FLAG-tagged Ly49Q-YF was described previously (Toyama-Sorimachi et al., 2004). FLAG-tagged Ly49Q-YF inserts were excised from pME18S-Ly49Q-YF with Sail and Hind III and then ligated into the Xho I sites in pCAGGS in the correct orientation. The construct for the transgene was excised from pCAGGS-Ly49Q-YF with Sail and Hind III and purified with the QiAquick Gel Extraction Kit (Qiagen K.K., Tokyo, Japan). To screen Tg mice, genomic PCR and FACS were performed using Ly49Q-specific primers (Toyama-Sorimachi et al., 2004) and a Ly49Q antibody, respectively.

Cell Preparation

Murine neutrophils were isolated using the Histopaque-1077-Histopaque-1119 two-layer gradient method (Sigma-Aldrich, St Louis, MO) according to the manufacturer’s instructions. PECs were collected by washing the peritoneal cavity with cold PBS containing 0.05% EDTA 4 hr after intraperitoneal injections of 9% casein. In the experiments of Figure 1, the neutrophils were highly purified by cell sorting with an AutoMACS (Miltenyi Biotec GmbH, Germany) using magnetic beads followed by a FACS Vantage (Becton Dickinson, San Jose, CA).

Antibodies and Reagents

Preparation of the Ly49Q antibody was described previously (Toyama-Sorimachi et al., 2004). The following mAbs were from BD Bioscience PharMingen (San Diego, CA): FITC-conjugated anti-mouse Gr-1 (RB6-8C5), PE-conjugated anti-mouse Mac-1 (M1/70), streptavidin-conjugated APC and PE, control rat IgG2a and IgG2b, anti-mouse CD18 (M1/18/2), and anti-CD29 (9E9). Biotin-conjugated and purified anti-FLAG M2 were from Upstate Biotechnology Inc. (Lake Placid, NY). The anti-HA was from Roche Diagnostics GmbH (Mannheim, Germany). Antibodies against SHP-1, SHP-2, phospho-SHP-2, SHIP, Hck, Fgr, and FPR were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). Antibodies against Src and phospho-Src were from Daichi Pure Chemicals Co. LTD. (Tokyo, Japan). TRITC-conjugated anti-paxillin was from BD Biosciences (San Diego, CA). FITC-conjugated or Alexa Fluor 594-conjugated anti-mouse IgG, Alexa Fluor 594-conjugated anti-rat IgG, Alexa Fluor 594-conjugated anti- mouse IgG, Alexa Fluor 488-conjugated anti-rat IgG, Alexa Fluor 633-conjugated SA, and Alexa Fluor 488- or Alexa Fluor 594-conjugated phalloidin were from Molecular Probes Inc. (Eugene, OR). PE-conjugated H-2Kβ tetramer (T-Select H-2Kβ OVA tetramer-SIINFEKL-PE) was from Medical & Biological Laboratories Co. Ltd. (Nagoya, Japan). Zymosan A from Saccharomyces cerevisiae was from Sigma Aldrich (St Louis, MO). fMLP was from Sigma (St Louis, MO) and Peptide Institute Inc. (Osaka, Japan).

Flow Cytometric Analysis

Immunoﬂuorescence analysis was performed as previously described (Toyama-Sorimachi et al., 2004). Cytoplasmic staining was performed using the Cytofix/Cytoperm kit according to the manufacturer’s instructions (BD Biosciences, San Diego, CA). Stained cells were analyzed with a FACS Calibur (Becton Dickinson, San Jose, CA).

Vectors and cDNA Transfection

WEHI3 transfectants expressing Ly49Q-WT or Ly49Q-YF were described previously (Toyama-Sorimachi et al., 2004). COS7 cells were transfected by electroporation using a Gene Pulser II (Bio-Rad Laboratories, CA). In some experiments, a Microporator MP-100 (Digital Bio, NanoEnTek Inc., Seoul, Korea) was used to introduce plasmids into RAW264.7 cells, following the manufacturer’s instructions.

Immunohistochemical Staining

Cells adhering to glass coverslips or fibronectin-coated multiwell chamber slides (BD Biosciences, Bedford, MA) were fixed with 3.7% formalin in PBS at RT for 15 min, then treated with 0.1% Triton X-100 in PBS for 20 min. After being washed with PBS containing 0.05% BSA, the cells were treated with 3% BSA in PBS to prevent nonspecific protein binding. The cells were then stained with FITC-conjugated antibodies or Alexa594-labeled phalloidin. The unconjugated antibodies were visualized using Alexa488- or Alexa594-labeled secondary antibodies. The cells were then mounted and analyzed by confocal or fluorescence microscopy (Olympus, Hamamatsu, Japan). In the experiment using siRNA, the staining of raf was analyzed by confocal microscopy (Zeiss, Germany) and quantified by the LC500 analysis program.

Transmigration Assay In Vitro

The in vitro transmigration assay was performed using a Chemotaxicell system with a 5 μm pore size (Kurabo Ind. LTD, Osaka, Japan). BM cells (1 x 10⁶) in serum-free RPMI containing 2% BSA were seeded into the upper chambers of the system. In the lower chambers, fMLP at the concentrations indicated was added. After 45 min of incubation at 37°C, 5% CO₂, the cells that had migrated to the lower chamber were collected by centrifugation (1,200 rpm for 5 min at 4°C), and counted.

Neutrophil Migration Assay In Vivo

In vivo neutrophil migration was assayed using the dorsal air pouch model. Sterilized air (4 ml) was injected into the back of mice two times with a 3 day interval, followed by the injection of 1 ml of 0.5 mg/ml zymosan suspension into the air pouch. Three hours later, the cells that had infiltrated the air pouch were collected with cold PBS containing 0.05% EDTA and were counted.

Neutrophil Invasion Assay In Vitro

The neutrophil invasion assay was performed using BD Matrigel Invasion Chamber 24-well plates (8.0 μm) (BD Biosciences, Bedford, MA), according to the manufacturer’s protocol with minor modification. Briefly, BM cells (2.5 x 10⁶) in serum-free RPMI containing 2% BSA were seeded into the upper chambers of the system. In the lower chambers, fMLP at various concentrations was added. After 2.5 hr of incubation at 37°C, 5% CO₂, the filters were stained with Diff-Quick and analyzed by light microscopy (Olympus, Hamamatsu, Japan). Four randomly selected fields at 200-fold magnification were photographed, and the cells were counted. In addition, the outlines of the migrated cells were traced using ImageJ, a Java image-processing program inspired by NIH image, to determine the area in pixels occupied by the migrated cells. Outlines were drawn around cell clusters, which appeared as large islands, and around single migrated cells, which appeared as small islands. The number of pixels within the outlined areas was determined with ImageJ, and the frequencies of regions that covered more than 150 pixels were displayed as 200 pixel intervals.

Cell Adhesion Assay

The cell adhesion assay was performed as described previously with the following modifications (Toyama-Sorimachi et al., 1999). Fibronectin-coated
8-well chamber slides (BD Biosciences, Bedford, MA) were used. The adherent cells were lysed with PBS containing 1% NP-40, and the fluorescence intensity in the lysates was quantified by a Fluoroskan Ascent FC (Thermo Fisher Scientific Inc., Suwanee, GA).

Immunoprecipitation

Cells were lysed in 1% NP-40 lysis buffer consisting of 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1.5 mM MgCl2, 100 mM NaF, 1 mM Na3VO4. After 25 μl of 1% NP-40 lysis buffer containing 100 mM NaF and 1 mM Na3VO4, the cell lysates were used to prepare immunoprecipitation and immunoblotting.

RNA Interference

Double-stranded RNA for Ly49Q interference (UGAGGCAAUCAAGGGU CAAGQAGAA) was purchased from Hokkaido System Science (Tsukuba, Japan). To introduce the siRNA into X63 cells, a myeloma cell line that expresses Ly49Q endogenously, a Microporator MP-100 (Digital Bio, NaneNTeK Inc., Seoul, Korea) was used, according to the manufacturer's instructions. Transfection efficiency was estimated by using an FITC-conjugated control siRNA (Santa Cruz Biotech. Inc. CA).

Sucrose-Gradient Centrifugation to Prepare Raft Compartments

WEHI3 transfectants (6 × 106 cells) were collected in ice-cold PBS and suspended in cold 5% FCS/PBS at 1–5 × 106 cells/75 μl. After 25 μl of 100 μM FMLP was added, the cells were incubated at 37°C for various periods. Incubation was terminated by adding 1 ml of 1% NP-40 lysis buffer containing 100 mM NaF and 1 mM Na3VO4. The cell lysates were subjected to immunoprecipitation and immunoblotting.

Analysis of Tyrosine-Phosphorylated Proteins

The cell lysates were subjected to immunoprecipitation and immunoblotting. Analysis of Tyrosine-Phosphorylated Proteins

Statistical Analysis

The statistical significance of differences in the protein load, invasion, adhesion, and spreading of neutrophils was determined with the two-tailed Student’s t test. Differences with a p value less than 0.05 were considered significant.

SUPPLEMENTAL INFORMATION

The Supplemental Data include five figures and Supplemental Experimental Procedures and can be found with this article online at doi:10.1016/j.immuni.2010.01.012.

ACKNOWLEDGMENTS

We thank T. Kitamura for providing the pMXs-IREG-6GFP plasmid; M. Miyazaki for the pCAGGS plasmid; M. Miyasaka, T. Sado, L.A. Miglietta, and G.E. Gray for critical reading of this manuscript; T. Okamura, S. Takahashi, and other members of the JAC Inc., Japan, for animal care; and M. Oikubo, N. Sato-Yamashiro, and M. Nakasuji for technical support. We also thank H. Sorimachi, K. Nishikawa, and M. Watanabe-Takahashi for helpful discussion and raft preparation and Ms. K. Furuta for secretarial support. This work was supported by grants-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (17590445 and 19590507 for N.T.-S., 1839012 for K.I.), grants-in-aid for Research on intractable diseases from the Ministry of Health and Labour Sciences research grants (N.T.-S.), and grants from the Takeda Foundation and the Natlo Foundation. S.S., M.Y., A.T., and K.F.-T. performed experiments; C.T. and H.Y. established Tg mice; T.D. helped in doing experiments; A.P.M. generated KO mice; and N.T.-S. designed the research and wrote the manuscript with K.I. and T.S.

Received: July 4, 2009
Revised: November 11, 2009
Accepted: January 22, 2010
Published online: February 11, 2010

REFERENCES

